首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7611篇
  免费   488篇
  国内免费   1325篇
  2024年   19篇
  2023年   149篇
  2022年   239篇
  2021年   317篇
  2020年   340篇
  2019年   316篇
  2018年   262篇
  2017年   258篇
  2016年   288篇
  2015年   251篇
  2014年   344篇
  2013年   651篇
  2012年   298篇
  2011年   364篇
  2010年   264篇
  2009年   465篇
  2008年   470篇
  2007年   399篇
  2006年   363篇
  2005年   380篇
  2004年   254篇
  2003年   243篇
  2002年   235篇
  2001年   169篇
  2000年   146篇
  1999年   146篇
  1998年   126篇
  1997年   139篇
  1996年   135篇
  1995年   137篇
  1994年   153篇
  1993年   136篇
  1992年   113篇
  1991年   95篇
  1990年   110篇
  1989年   84篇
  1988年   56篇
  1987年   48篇
  1986年   67篇
  1985年   81篇
  1984年   76篇
  1983年   36篇
  1982年   38篇
  1981年   28篇
  1980年   22篇
  1979年   29篇
  1978年   20篇
  1977年   37篇
  1976年   14篇
  1975年   5篇
排序方式: 共有9424条查询结果,搜索用时 578 毫秒
1.
The photosynthetic reaction center complex from the green sulfur bacteriumChlorobium vibrioforme has been isolated under anaerobic conditions. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals polypeptides with apparent molecular masses of 80, 40, 30, 18, 15, and 9 kDa. The 80- and 18-kDa polypeptides are identified as the reaction center polypeptide and the secondary donor cytochromec 551 encoded by thepscA andpscC genes, respectively. N-terminal amino acid sequences identify the 40-kDa polypeptide as the bacteriochlorophylla-protein of the baseplate (the Fenna-Matthews-Olson protein) and the 30-kDa polypeptide as the putative 2[4Fe-4S] protein encoded bypscB. Electron paramagnetic resonance (EPR) analysis shows the presence of an iron-sulfur cluster which is irreversibly photoreduced at 9K. Photoaccumulation at higher temperature shows the presence of an additional photoreduced cluster. The EPR spectra of the two iron-sulfur clusters resemble those of FA and FB of Photosystem I, but also show significantly differentg-values, lineshapes, and temperature and power dependencies. We suggest that the two centers are designated Center I (with calculatedg-values of 2.085, 1.898, 1.841), and Center II (with calculatedg-values of 2.083, 1.941, 1.878). The data suggest that Centers I and II are bound to thepscB polypeptide.  相似文献   
2.
A bioactive peptide of 8595 Da was purified from the cell free supernatant of Lactococcus garvieae subsp. bovis BSN307T. MALDI MS/MS peptide mapping and the data base search displayed no significant similarity to any reported antimicrobial peptide of LAB. This peptide at a dose concentration of 200 µg ml−1 inhibited the growth of both Gram-positive and Gram-negative bacteria by 58–89% and a dose of 500 µg ml−1 scavenged 50% of DPPH-free radicals generated. Interestingly, cytotoxicity assay demonstrated that 17 µg ml−1 of peptide selectively inhibited 50% proliferation of mammalian cancer cell lines HeLa and MCF-7 whereas normal H9c2 cells remained unaffected. Fluorescent microscopic analysis after DAPI nuclear staining of HeLa cells showed characteristics of apoptosis and activation of caspase-3 was ascertained by caspase-3 fluorescence assay.  相似文献   
3.
4.
几十年来,由于抗生素的大量使用,导致了细菌对很多药物的抗药性.为了克服细菌的抗药性问题,需要用新的思路去发掘新的抗生素,包括发掘细菌细胞中存在的抗生素作用的新靶点.蛋白质的分泌过程对于细菌是生死攸关的,它可能成为新药物的适合靶点.  相似文献   
5.
Abstract

Microorganisms capable of aerobic respiration on ferrous ions are spread throughout eubacterial and archaebacterial phyla. Phylogenetically distinct organisms were shown to express spectrally distinct redox‐active biomolecules during autotrophic growth on soluble iron. A new iron‐oxidizing eubacterium, designated as strain Funis, was investigated. Strain Funis was judged to be different from other known iron‐oxidizing bacteria on the bases of comparative lipid analyses, 16S rRNA sequence analyses, and cytochrome composition studies. When grown autotrophically on ferrous ions, Funis produced conspicuous levels of a novel acid‐stable, acid‐soluble yellow cytochrome with a distinctive absorbance peak at 579 nm in the reduced state.

Stopped‐flow spectrophotometric kinetic studies were conducted on respiratory chain components isolated from cell‐free extracts of Thiobacillus ferrooxidans. Experimental results were consistent with a model where the primary oxidant of ferrous ions is a highly aggregated c‐type cytochrome that then reduces the periplasmic rusticyanin. The Fe(II)‐dependent, cytochrome c‐catalyzed reduction of the rusticyanin possessed three kinetic properties in common with corresponding intact cells that respire on iron: the same anion specificity, a similar dependence of the rate on the concentration of ferrous ions, and similar rates at saturating concentrations of ferrous ions  相似文献   
6.
1. We performed three, 1‐week in situ experiments in March‐April (expt 1), May (expt 2) and August (expt 3) 2003 in order to assess protozoan and virus‐induced mortality of heterotrophic bacteria in a French lake. Viral and bacterial abundances were obtained using flow cytometry (FCM) while protozoa were counted using epifluorescence microscopy (EFM). 2. A dilution approach, applied to pretreated grazer‐free samples, allowed us to estimate that viral lysis could be responsible for 60% (expt 1), 35% (expt 2) and 52% (expt 3) of daily heterotrophic bacterial mortality. Flagellate (both mixotrophic and heterotrophic) grazing in untreated samples, was responsible for 56% (expt 1), 63% (expt 2) and 18% (expt 3) of daily heterotrophic bacteria removal. 3. These results therefore suggest that both viral lysis and flagellate grazing had a strong impact on bacterial mortality, and this impact varied seasonally. 4. From parallel transmission electron microscopy (TEM) analysis, we found that the burst size (i.e. the number of viruses potentially released per lysed cell) ranged from nine to 25 (expt 1), 10 to 35 (expt 2) and eight to 25 (expt 3). The percentage of infected heterotrophic bacteria was 5.7% (expt 1), 3.4% (expt 2) and 5.7% (expt 3) so that the calculated percentage of bacterial mortality induced by viruses was 6.3% (expt 1), 3.7% (expt 2) and 6.3% (expt 3). 5. It is clear that the dilution‐FCM and TEM methods yielded different estimates of viral impact, although both methods revealed an increased impact of viruses during summer.  相似文献   
7.
Previous studies revealed the thermodynamic properties of DNA adsorption on pure minerals or biomasses; however, there has been little attempt to develop such studies on bacteria–mineral composites. Equilibrium adsorption experiments, attenuated total reflectance Fourier transform infrared spectroscopy, and isothermal titration calorimetry were employed to investigate the adsorption of DNA by Bacillus subtilis, Pseudomonas putida, and their composites with minerals. Similar capacity and affinity were observed for DNA adsorption on two bacterial cells. However, different patterns were found in the adsorption of DNA by bacteria–mineral composites. The Gram-positive bacterium B. subtilis enhanced the adsorption of DNA on its mineral composites compared with their individual components, while the composites of Gram-negative bacterial cells with kaolinite and goethite bound lower amounts of DNA than the predicted values. The thermodynamic parameters and the Fourier transform infrared spectra showed that van der Waals force and hydrogen bonding are responsible for the DNA adsorption on B. subtilis–minerals and P. putida–kaolinite. By contrast, the entropy increases of excluded water rearrangement and dehydration effect play key roles in the interaction between DNA and P. putida–montmorillonite/goethite composites.  相似文献   
8.
Sulfur bacteria such as Beggiatoa or Thiomargarita have a particularly high capacity for storage because of their large size. In addition to sulfur and nitrate, these bacteria also store phosphorus in the form of polyphosphate. Thiomargarita namibiensis has been shown to release phosphate from internally stored polyphosphate in pulses creating steep peaks of phosphate in the sediment and thereby inducing the precipitation of phosphorus-rich minerals. Large sulfur bacteria populate sediments at the sites of recent phosphorite formation and are found as fossils in ancient phosphorite deposits. Therefore, it can be assumed that this physiology contributes to the removal of bioavailable phosphorus from the marine system and thus is important for the global phosphorus cycle. We investigated under defined laboratory conditions which parameters stimulate the decomposition of polyphosphate and the release of phosphate in a marine Beggiatoa strain. Initially, we tested phosphate release in response to anoxia and high concentrations of acetate, because acetate is described as the relevant stimulus for phosphate release in activated sludge. To our surprise, the Beggiatoa strain did not release phosphate in response to this treatment. Instead, we could clearly show that increasing sulfide concentrations and anoxia resulted in a decomposition of polyphosphate. This physiological reaction is a yet unknown mode of bacterial polyphosphate usage and provides a new explanation for high phosphate concentrations in sulfidic marine sediments.  相似文献   
9.
Chemical tools capable of detecting ferrous iron with oxidation-state specificity have only recently become available. Coincident with this development in chemical biology has been increased study and appreciation for the importance of ferrous iron during infection and more generally in host–pathogen interaction. Some of the recent findings are surprising and challenge long-standing assumptions about bacterial iron homeostasis and the innate immune response to infection. Here, we review these recent developments and their implications for antibacterial therapy.  相似文献   
10.

With the view of incorporating quaternary ammonium salts (QAs) in marine paints, nineteen of these were tested against a community of marine bacteria, at a temperature and salinity close to those of seawater. The concentration of QAs and the length of the main substituting chain are the main parameters affecting the growth and adhesion of bacteria, but the nature of (i) the other chains, (ii) the counter‐ion and (iii) the rings when inserted in the QA molecule also influenced the bacteria. Increasing the concentration of the QAs decreased the growth rate of the bacteria, the maximum cell density at the plateau and the rate of adhesion. The effect of increasing the length of the main chain depended on the range of carbon numbers. Below 7 carbon atoms, the growth rate was not significantly modified, but the numbers of cells at the plateau increased in contrast with the adhesion rate which decreased rapidly. Increasing the length of the chain to between 7 and 16 carbon atoms resulted in a decrease in the growth rate, a decrease and then a stabilisation in the numbers of cells at the plateau and no further change in the adhesion rate. Possibly an increase in growth rate, adhesion rate and in the numbers of cells at the plateau may occur above 16 carbon atoms. In contrast, the length of the other chains influenced positively the cell concentration at the plateau, and more generally the efficiency of QAs decreased substantially when these chains had the same numbers of carbon atoms. QAs with iodide as counter‐ion were more effective than those with chloride or bromide and phenyl was more effective than benzyl as rings inserted in QAs. The minimum inhibitory concentrations (MIC) were often very high if compared to standard methods with laboratory strains, and this can be tentatively explained by the dominance of Gram— bacteria in the community assayed, the development of resistant strains in the cultures used with time and the presence of organic matter in the culture medium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号